
SHA-256 Limited Statistical Analysis
Dr. Russell J. Davis
Femtosecond Inc.

9747 Water Oak Drive
Fairfax, VA 22031-1029

RDavis@femto-second.com

Abstract

This paper attempts to infer Secure Hash Algorithm (SHA) weaknesses
without actually identifying the root cause. By examining the message digest
generated from a given hash function statistical patterns are examined that could
indicate algorithm weaknesses. This paper presents an analysis of the SHA-256
algorithm by analyzing 2-bit distributions extracted from the message digests.
The test approach presented uses the Statistical Process Control (SPC)
Threshold to identify those 2-bit samples indicative of a process out of control.

Test Approach

The approach taken was to code a sequential counter and then calculate
a new hash for each incremented value. Consider that the SHA-256 produces a
256-bit message digest. Let the least significant bit be bit-location 0 and the
most significant bit, be location 255. Then all bits within the message digest can
be represented by their location within the message digest.

Each resulting message digest was mapped into 2-bit values. Using a [i,j]
representation for each 2-bit pair within the 256-bit message digest, each bit
represents the positional location (0, .., 255) within the message digest. As a
further restriction, the first and second bits were not allowed to be the same.
That is, let i represent the most significant bit and j, the lease significant bit;
where 0 ≤ i ≤ 255, 0 ≤ j ≤ 255, and i ≠ j. To keep track of the values, a 64K array
was used to hold the (256*255 or 65280) possible SHA-256 2-bit values).

The reason for examining the 2-bit patterns was to examine the message
digests bit patterns that need not be adjacent. Additionally, the standard
deviations associated with the 2-bit ordering provided information unavailable
when examining only single bit results. Thus, the entire hash value was
examined for 2-bit pairs that were unusually far from the average of all samples.
Next, runs of 10 million hashes were calculated over incremented values and
each 2-bit sample accumulated. That is, a starting point was selected, hash
value calculated over the incremented value, and the counter incremented.
Given the value for each sample was between 0 and 3, the expected value was
1.5. For each of 10 million hashes, the 2-bit value was accumulated. So the
expected accumulated sum was 15 million for each of the 65,280 2-bit pairs.
Each of these bit pairs represented one accumulated sample measured against
the SPC Threshold

Next, the average for all samples was calculated along with the standard
deviation, σ. The standard deviation provided a measurement of how close the
samples were to the average.

©2005 Femtosecond Inc. -1-

Statistical Process Control

One technique often used within quality control is the Statistical Process
Control (SPC) Threshold. This is defined as the mean plus (or minus) three
standard deviations.

σ3±= xldSPCThresho

The SPC Threshold can be plotted above and below (using -3σ for the
lower Threshold) the average value. What we were interested in determining
was the number (if any) samples that exceed the SPC Threshold. In other
industries that utilize the SPC Threshold as a quality control measurement,
samples exceeding this value are indicative of a “process out of control.” The
approach described in this paper was to identify how many samples were
considered a “process out of control.” To improve the overall sampling, 8 different
starting points and/or initializations were selected. Note: SPC does not identify
the root problem it only indicates that one (or more) exists. Changes to the
existing processes (or algorithms as in this case) can be re-examined to see if
there are still processes out of control. The approach presented builds on the
established SPC measurement approach. Although only the SHA-256 is
discussed in this paper, the approach could be applied to any hash algorithm.

Eight test run configurations were prepared. Given the large number of
message digests to analyze, the hashed data was constructed to fit into a single
block (SHA-256 uses 512-bit block sizes). The test fixture then could use the
same padding, substitute the new value, and then calculate the new hash value.
The box below summarized the eight test runs. Each of the 10 million hash runs
included calculating 65,280 samples. For the first two runs, two different starting
locations were selected. A 32-bit unsigned integer has over 4 billion possible
values. The first run initialized the counter to a starting value of 10,000,000. It
was assumed that during the algorithm development, starting values of 0 were
likely already tested. For run 2, the starting location was selected just under 10
million. Note: the test fixture used unsigned integers. The negative number
shown below is so the reader can quickly determine where in the value range the
initial value was selected. For the remaining six runs, the size of the hashed
value was 64-bits. Moreover, the counter was placed in the most significant
(w[1]) 32-bit unsigned integer. So the starting points shown are with respect to
the upper 32-bits. During some tests, the least significant 32-bit unsigned integer
(w[0]) was initialized to either all 1’s or an alternating pattern of 1’s and 0’s. In
particular, runs 7 & 8 used a hex value 0xa55aa55a. The hex representation for
5 is 0101 and for A is 1010. So the resulting value was as follows:
10100101010110101010010101011010. This was selected to provide a mix of
1’s and 0’s within the lower 32-bit unsigned integer.

Run 1: Hashes = 10,000,000 starting value=10,000,000, size = 32
Run 2: Hashes = 10,000,000 starting value=-16,777,216, size=32. Note that the

10 million samples are at the high end of the possible addresses.

©2005 Femtosecond Inc. -2-

Run 3: Hashes = 10,000,000 starting value=1 size=64
Run 4: Hashes = 10,000,000 starting value=-16,777,216 size=64
Run 5: Hashes = 10,000,000 starting value=1 size=64 (all 1's). That is the w[0]

value is set to all 1’s. That is, the first 32-bits are all 1’s. Also note that
the SHA-256 provided its poorest results under this condition.

Run 6: Hashes = 10,000,000 starting value=-16,777,216, w[0] = 1’s
Run 7: Hashes = 10,000,000 starting value=1, size = 64, w[0] is set to a mix

0xa55aa55a
Run 8: Hashes = 10,000,000 starting value=-16,777,216, size = 64, w[0] is set to

a mix 0xa55aa55a

Next the test fixtures were run using the SHA-256 algorithm. Of the 8
tests run, table 1 summarizes the number of samples considered a “process out
of control.” (Later in the paper, figure 7 provides a graphic of this table.)

Run 1 Hi 10

Low 19
Run 5 Hi 29

Low 249
Run 2 Hi 6

Low 26
Run 6 Hi 49

Low 34
Run 3 Hi 80

Low 54
Run 7 Hi 109

Low 14
Run 4 Hi 62

Low 29
Run 8 Hi 57

Low 40
Table 1 SHA-256 sample summaries exceeding the SPC Threshold

Having identified a number of samples indicating "a process out of

control,” the next step was to try and identify why. According to the National
Institute of Standards and Technology (NIST) Federal Information Processing
Standards (FIPS) Publication 180-2, “These words represent the first thirty-two
bits of the fractional parts of the cube roots of the first sixty-four prime numbers.”
No reason was provided as to why these values were selected. However, the
implication was that prime numbers were considered necessary for the SHA-256.
Close examination of the SHA-256 constants reveals that only four of the
numbers are actually prime numbers. These numbers are listed below.

K5 (3956c25b) is a prime number
K7 (ab1c5ed5) is a prime number
K28 (c6e00bf3) is a prime number
K37 (766a0abb) is a prime number

To see if prime numbers were needed, a new array of prime numbers was

selected and the tests run. Once again, there were numbers of samples outside
of the statistical Threshold. To further examine why this might be, a short
program was created to count the number of 1’s within the array. Assuming a
uniform distribution, one would expect 1024 bits to be one. However, number of
1’s within the SHA-256 k array is 993 out of 2048. To further analyze the SHA-

©2005 Femtosecond Inc. -3-

256 default constants, another program was written to calculate the number of
1’s for each constant. For example, the prime number constant K5 (3956C25B)
has 16 1’s (0011-1001-0101-0110-1100-0010-0101-1011). The following table
illustrates the SHA-256 results.

K0 = 22 K1 = 14 K2 = 20 K3 = 20 K4 = 16 K5 = 16
K6 = 14 K7 = 18 K8 = 14 K9 = 11 K10 = 14 K11 = 16
K12 = 19 K13 = 18 K14 = 17 K15 = 17 K16 = 16 K17 = 20
K18 = 16 K19 = 11 K20 = 18 K21 = 13 K22 = 16 K23 = 18
K24 = 14 K25 = 15 K26 = 12 K27 = 23 K28 = 16 K29 = 17
K30 = 13 K31 = 13 K32 = 15 K33 = 13 K34 = 18 K35 = 13
K36 = 14 K37 = 17 K38 = 13 K39 = 13 K40 = 17 K41 = 14
K42 = 14 K43 = 16 K44 = 14 K45 = 13 K46 = 15 K47 = 10
K48 = 12 K49 = 14 K50 = 15 K51 = 16 K52 = 14 K53 = 15
K54 = 18 K55 = 19 K56 = 17 K57 = 18 K58 = 11 K59 = 10
K60 = 13 K61 = 15 K62 = 23 K63 = 17

Consider the value K63 = BEF9A3F7. This is represented by the following:
1011-1110-1111-1001-1010-0011-1111-0111 for a total of 23 1’s (and 9 0’s). A
new array was generated that had exactly 1024 1’s and 1024 0’s. Once again,
the hash results contained many samples considered “a process out of control.”
Considering that prime numbers will have the least significant bit set to a 1, the
next thought was that by using prime numbers, there was consistency in the
constants and therefore a reduction in randomness. Note, in the case of Cyclic
Redundancy Checks (CRC) or polynomial checksums, the least significant bit is
always inferred so representation is not necessary. Another point is that CRC
uses a MOD 2 division across all bits.

In the hope of reducing the impact associated with the least significant bit
always one, a bit rotating modification was applied to the SHA-256 algorithm.
The following illustrates a code snippet that uses the least significant 5-bits
(rotation is between 0 and 31 bits inclusive) to determine how many places to
rotate the 32-bit unsigned integer. In retrospect, even this rotation provides
some determinism. Nevertheless, it was hoped to see if any inference could be
made regarding the use of all prime numbers with the least significant bit always
set to 1.

 T1 = h + Sigma1(e) + Ch(e,f,g) + k[t] + w[t];
 T2 = Sigma0(a) + Maj(a,b,c);
 h = ROTR(g, (0x0000001f & h));
 g = ROTR(f, (0x0000001f & g));
 f = ROTR(e, (0x0000001f & f));
 e = d + T1;
 d = ROTR(c, (0x0000001f & d));
 c = ROTR(b, (0x0000001f & c));
 b = ROTR(a, (0x0000001f & b));
 a = T1 + T2;

©2005 Femtosecond Inc. -4-

Note that the current variable provided the 5-bit rotation value used in
determining how many placed to rotate. It was hoped that this would provide a
pseudo-random approach for rotating variables.

The next table, 2, summarizes the results and is referenced throughout
the remainder of this paper. To delimit the various test runs, each starts with a
shaded average.

 SHA-256 Using all

Primes
(Primes 1)

Random
Rotation

New
Primes

(Primes 2)

New
Primes and

Random
Rotation

1. Average 14999915.51 15000260.93 14999800.13 15000475.7 15000149.81
σ 3636.659235 3263.691944 3724.717058 3865.039014 3576.932707
3σ 10909.97771 9791.075831 11174.15118 11595.11704 10730.79812
Average - 3σ 14989005.54 14990469.86 14988625.97 14988880.59 14989419.01
Average + 3σ 15010825.49 15010052.01 15010974.28 15012070.82 15010880.61
Hi 10 85 70 62 79
Low 19 60 0 191 47
2. Average 14999690.71 14999901.24 14999948.04 14999822.51 14999841.35
σ 3525.590188 3547.734373 3501.028731 3453.650234 3462.272359
3σ 10576.77056 10643.20312 10503.08619 10360.9507 10386.81708
Average - 3σ 14989113.94 14989258.03 14989444.95 14989461.55 14989454.54
Average + 3σ 15010267.48 15010544.44 15010451.12 15010183.46 15010228.17
Hi 6 60 57 167 109
Low 26 36 5 29 0
3. Average 15000459.3 15000040.7 15000000.8 15000154.83 14999868.88
σ 3639.475825 3539.78344 3636.90566 3643.824875 3125.753231
3σ 10918.42748 10619.3503 10910.717 10931.47462 9377.259692
Average - 3σ 14989540.88 14989421.4 14989090.1 14989223.36 14990491.62
Average + 3σ 15011377.73 15010660.1 15010911.6 15011086.31 15009246.14
Hi 80 33 70 301 20
Low 54 105 44 71 206
4. Average 15000114.48 14999811.2 15000230.3 15000131.82 14999757.38
σ 3732.716614 3551.240409 3473.30192 3507.913847 3543.986283
3σ 11198.14984 10653.72123 10419.9058 10523.74154 10631.95885
Average - 3σ 14988916.33 14989157.48 14989810.3 14989608.08 14989125.42
Average + 3σ 15011312.63 15010464.92 15010650.2 15010655.56 15010389.34
Hi 62 28 54 133 191
Low 29 65 1 51 16
5. Average 15000097 15000681.5 15000007.2 15000005.7 15000331.5
σ 3508.76049 3360.19235 3303.36354 3344.63741 3786.495486
3σ 10526.2815 10080.5771 9910.09062 10033.9122 11359.48646
Average - 3σ 14989570.7 14990600.9 14990097.1 14989971.8 14988972.01
Average + 3σ 15010623.2 15010762.1 15009917.3 15010039.6 15011690.98
Hi 29 125 23 154 43
Low 249 67 248 2 21
6. Average 14999728.31 15000011.1 15000014.02 14999554.43 15000482.29
σ 3753.888625 3475.43587 3176.766305 3554.391145 3358.892557
3σ 11261.66588 10426.3076 9530.298915 10663.17343 10076.67767
Average - 3σ 14988466.65 14989584.8 14990483.72 14988891.25 14990405.61
Average + 3σ 15010989.98 15010437.4 15009544.32 15010217.6 15010558.97
Hi 49 2 88 100 22

©2005 Femtosecond Inc. -5-

 SHA-256 Using all
Primes

(Primes 1)

Random
Rotation

New
Primes

(Primes 2)

New
Primes and

Random
Rotation

Low 34 25 43 55 231
7. Average 14999972.26 14999635.2 14999928.05 15000259.55 15000237.94
σ 3458.229172 3332.01374 3296.225964 3690.038521 3379.704907
3σ 10374.68752 9996.04122 9888.677892 11070.11556 10139.11472
Average - 3σ 14989597.57 14989639.2 14990039.37 14989189.44 14990098.83
Average + 3σ 15010346.94 15009631.2 15009816.73 15011329.67 15010377.05
Hi 109 72 23 4 22
Low 14 86 10 46 0
8. Average 15000543.49 14999858.96 15000176.21 14999643.75 14999886.75
σ 3384.023608 3613.83896 3608.368567 3472.42854 3657.398568
3σ 10152.07082 10841.51688 10825.1057 10417.28562 10972.1957
Average - 3σ 14990391.41 14989017.44 14989351.11 14989226.47 14988914.55
Average + 3σ 15010695.56 15010700.47 15011001.32 15010061.04 15010858.94
Hi 57 38 39 61 5
Low 40 65 93 21 43

Table 2: Comparison of Results

Analysis

There appears to be a number of conditions that provide results outside of
acceptable limits as measured using SPC Thresholds across 2-bit accumulated
samples. While this analysis does not specifically identify specific weaknesses
exist, it does suggest the current algorithm may have unexpected consistencies.
Consider the following Primes 2 (new primes) with rotation Run 5 example where
the last 5 samples and location are depicted. The largest sample at location
[78,198] has a sum 1743 higher than the Statistical Process Control Threshold or
46% of one standard deviation. While on an absolute scale this may not seem
like much; but when compared to all other samples, it is excessive.

15012845 [78,123] 15000331.5 Average
15012976 [78,46] 3786.495486 σ
15013018 [78,45] 11359.48646 3σ
15013323 [198,78] 14988972.01 Average - 3σ
15013434 [78,198] 15011690.98 Average + 3σ

 43 Hi
 21 Low

©2005 Femtosecond Inc. -6-

In contrast, looking at the SHA-256 run 5 results, the ten lowest samples,
with the statistical information to the right, follows:

Sample Location Average 15000097
14984045 [132,231] σ 3508.76049
14984284 [132,13] 3σ 10526.2815
14984562 [132,181] Average - 3σ 14989570.7
14984670 [132,23] Average + 3σ 15010623.2
14984718 [132,99] Hi 29
14984801 [132,20] Low 249
14984998 [132,114]
14985153 [132,87]
14985186 [132,40]
14985231 [132,73]

For the low value samples observed, bit 132 produced an inordinate

number of 0’s during the run. The lowest sample at the 2-bit location [132,73]
was 16,052 below the average. This was 4.57 standard deviations below the
average. In comparison, the ten highest samples taken from the Primes 2 run 3
are as follows:

15014650 [91,213] 15000154.83 Average
15014697 [91,9] 3643.824875 σ
15015047 [213,137] 10931.47462 3σ
15015132 [137,164] 14989223.36 Average - 3σ
15015141 [9,137] 15011086.31 Average + 3σ
15015419 [137,34] 301 Hi
15015759 [91,137] 71 Low
15016156 [137,213]
15016203 [137,9]
15016512 [137,91]

The largest sample at 2-bit location [137, 91], was 16,357 above the

average. This is 4.49 standard deviations above the average. Note that the size
of three standard deviations is critical in determining the Threshold. Given that
changes to the constants produced different samples exceeding the SPC
Threshold, indicates that there is likely something in the basic algorithm that
could be improved. In the remaining figures, the results of eight test runs
summarized in table 2 are graphically depicted. It should be noted that had
additional runs been done, more information might have been inferred from the
test results.

The SHA-256 was run using eight different initializations. As the average
distance from the average increased, so too did the 3σ values as shown in
Figure 1.

©2005 Femtosecond Inc. -7-

Eight Sample Run SHA-256

10,000
10,200
10,400
10,600
10,800
11,000
11,200
11,400

1 2 3 4 5 6 7 8

3 Sigma Values

Figure 1: 3σ Values for SHA-256 Runs

Additionally, the sample averages also changed with each run. Figure 2
illustrates how the SHA-256 averages changed with each run. The expected
value for the samples is 15 million, shown as the heavy line in the figure.

14,999,600

14,999,800

15,000,000

15,000,200

15,000,400

15,000,600

1 2 3 4 5 6 7 8

SHA-256 Averages

Figure 2: SHA-256 Sample Averages

The next figure, 3, illustrates the 3σ values for the SHA-256 as compared

to the values obtained from using all primes (cases 1 & 2). From this figure, the
three environments appear to be within the same value range.

©2005 Femtosecond Inc. -8-

3 Standard Devications

9500

10000

10500

11000

11500

12000

1 2 3 4 5 6 7 8

Run

SHA-256 Primes 1 Primes 2

Figure 3: 3σ SHA-256 and Primes comparisons

The next figure, 4, depicts the sample averages of the SHA-256 compared

with those of Primes 1 and 2. Again, the results all appear relatively close.

Sample Averages

14999500

15000000

15000500

15001000

1 2 3 4 5 6 7 8

Run

SHA-256 Primes 1 Primes 2

Figure 4: SHA-256 and Primes Sample Averages

To attempt compensating for the fixed least significant bit, an additional
rotation function previously discussed was added to the hash algorithm. The 3σ
values are shown in figure 5. It is interesting that there were wider variations in
the rotated prime values.

©2005 Femtosecond Inc. -9-

3 Standard Deviations

9000

9500

10000

10500

11000

11500

1 2 3 4 5 6 7 8

Run

SHA-256 Rotate 1 Rotate 2

Figure 5: 3σ SHA-256 and Rotated Primes comparisons

The next figure, 6, illustrates the sample averages of the SHA-256

compared to the rotated primes values. Again, the values are relatively close.

Sample Averages

14999600

14999800

15000000

15000200

15000400

15000600

1 2 3 4 5 6 7 8

SHA-256 Rotate 1 Rotate 2

Figure 6: SHA-256 and Rotated Primes Sample Averages

The next figure, 7, illustrates the SHA-256 samples that exceeded the
SPC Threshold for each test run. The total number of samples exceeding the
SPC Threshold is the sum of those too hi and too low. The next three figures
illustrate results obtained when changes were made to the k array of constants.

©2005 Femtosecond Inc. -10-

SHA-256 Samples Exceeding SPC Threshold

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

Low
Hi

Figure 7: SHA-256 Exceeded SPC Threshold Summary

The next figure, 8, depicts the number of samples exceeding the SPC

Threshold when using the first set of prime numbers.

Primes 1 Exceeded SPC Threshold

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Low
Hi

Figure 8: Primes 1 Exceeded SPC Threshold Summary

When selecting the second set of prime numbers, many were evenly

selected in the range 0.5 – 4.0 billion. This selection process may have
contributed to consistency in that the most significant hex value had a fixed
distance. Nevertheless, figure 9 depicts the eight test run results using the
second set of prime numbers.

©2005 Femtosecond Inc. -11-

Primes 2 Exceeded SPC Threshold

0
50

100
150
200
250
300
350
400

1 2 3 4 5 6 7 8

Low
Hi

Figure 9: Primes 2 Exceeded SPC Threshold Summary

In the next figure, 10, the results from the three previous charts are

compared side by side using the total number of samples exceeding the SPC
Threshold. It is interesting to note, the number of samples exceeding the SPC
Threshold are different for each run. Changing the array of constants did not
appear to be a solution for getting samples within three σ of the mean.

0

50
100

150

200

250
300

350

400

1 2 3 4 5 6 7

SHA-1 Primes 1 Primes 2

Figure 10: Comparison of Samples Exceeding SPC Threshold

As previously indicated, rotation was used to remove the consistent
constant (least significant bit always set to a 1). The results from rotating the
prime 1 constants array is shown in figure 11.

©2005 Femtosecond Inc. -12-

Rotate 1 Samples Exceeding SPC Threshold

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

Low
Hi

Figure 11: Rotated Primes 1 SPC Threshold Summary

Similarly, the rotation algorithm applied to the second array of primes is
depicted in figure 12.

Rotate 2 Samples Exceeding SPC Threshold

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

Low
Hi

Figure 12: Rotated Primes 2 SPC Threshold Summary

Figure 13 provides a comparison of the SHA-256 to the rotated primes

SPC Thresholds. That is, figure 7 is compared with figures 11 & 12. From this
last chart and the limited number of runs, there was no run that had all samples
within the SPC Threshold. It is unlikely there are 64 constants that will
consistently produce results with no out of process samples.

©2005 Femtosecond Inc. -13-

0

50

100

150

200

250

300

1 2 3 4 5 6 7

SHA-256 Rotated Primes 1 Rotated Primes 2

Figure 13: SPC Threshold Summary

Future work

Limited tests were run on one machine to generate the data used in
preparing this paper. A more robust 3-bit sample scheme and additionally
initializations would provide additional information regarding hash algorithm
strengths. Much of the work presented in this paper focused on the constants,
using primes, balancing the bit counts of the resulting array of constants, and
applying random bit rotation. From the results analyzed, for every run there was
a number of samples depicting processes out of control. Future work could focus
on alterations to the Sigma, Ch, and Maj functions used within the SHA-256.
Additionally, the other Secure Hash Algorithms should be tested. Perhaps
testing the inclusion of MOD 2 division, such as is done with CRC algorithms,
enhancements to the overall strength of secure hash algorithms could be
explored. Future testing could answer this question. There is likely some
algorithm modification that will eliminate sample values exceeding the SPC
Threshold. This would in turn provide better confidence in the strength of the
SHA algorithms.

Summary

This paper presented a testing approach using the Statistical Process
Control Threshold to identify 2-bit values indicative of a process out of control. In
each of the eight test runs, multiple samples were found to exceed the SPC
Threshold. Changing the constants array was explored and found not to provide
a consistent approach for eliminating excessive samples.

©2005 Femtosecond Inc. -14-

